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Fractals
What is a Fractal?

• A complex object 

• The complexity of which derives from self-similarity

• Or the repetition of form over a (finite) range of scales

“Bigger swirls have smaller swirls

that feed on their velocity, 

and smaller swirls have smaller swirls

and so on, to viscosity”
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Fractals
Fractal dimension

• Generalization of familiar integer-valued dimension

• Fractal dimension is real-valued, e.g., 3.3

• Large value after decimal point ⇒ rough surface

• Small value after decimal point ⇒ smoother surface

• Fractal dimension is not mathematically well-defined

• Can be used entirely subjectively
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Fractals
Dilation symmetry

• The easiest way to think of fractals:

Dilation symmetry

Invariance under change of scale (zooming in and out)

• Symmetry may be exact or statistical

Exact self-similarity: Koch snowflake

Statistical self-similarity: terrains, clouds
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Fractals
Deterministic vs. random fractals

• Deterministic fractals

Koch snowflake

Mandelbrot set

• Random fractals

Iterated function systems

L-systems

Fractional Brownian motion (fBm)
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Fractals
Complexity in Nature

• Nature is complex

• Fractals capture some—but not all—of that complexity

• Examples of fractals:

Trees

Mountains

Turbulence: clouds, fire, smoke, astronomical jets

• Counterexample:

A battered old tennis shoe
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Fractional Brownian Motion (fBm)
What is it?

• Generalization of Brownian motion:

Integral of progress on a random walk

• fBm is characterized by its power spectrum

Brownian motion has 1/f2 power spectrum

fBm has 1/fβ power spectrum, 1.0 = β = 3.0

• Just think of β as controlling roughness of the terrain

• For math, see Voss & Saupe in “The Science of Fractal Images”
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Fractional Brownian Motion (fBm)
The key variables

• Basis function: 

The shape that is repeated over a range of scales

• Spectral exponent:

Determines fractal dimension, or roughness of terrain

• Lacunarity:

The gap between successive scales

• Octaves:

The number of scales of self similarity
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Fractional Brownian Motion (fBm)
The basis function

• Should have range [-1.0 . . 1.0] 
So that integral remains zero
Expected value remains zero

• Shape is very important
Shape clearly shows through in fractal sum
(At lacunarity of 2.0)

• Can be literally anything!
Sparse convolution (wavelets) gives maximum flexibility
But is very expensive
(See Peachey in “Textures and Modelling: A Procedural Approach”)
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Fractional Brownian Motion (fBm)
The basis function

• Sine wave in Fourier synthesis
Mathematically pure: each frequency is defined exactly
Sine is periodic, so all finite sums of it are also periodic

• Triangle wave in polygon subdivision
Piecewise linear interpolation
Creases and sharp peaks

• Perlin noise
Piecewise cubic interpolation
Nice, aperidoic sine-wave substitute

• Others
Voronoi (see Worley, SIGGRAPH 96)
See list of basis functions in MojoWorld in CAL
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Fractional Brownian Motion (fBm)
The basis function

• Batch algorithms
Fourier synthesis
Polygon subdivision

• Point-evaulated
Perlin noise, Voronoi, sparse convolution
These are the so-called “procedural” methods

• Infinite support
Sine waves
Procedural noises

• Finite support
Polygon subdivision
Wavelets
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Fractional Brownian Motion (fBm)
The spectral exponent

• Determines the fractal dimension

• Or the roughness of our terrain

• Can be used correctly or incorrectly

• But you get a fractal nonetheless

See the course notes for the math

And the literature for unexpected complications

• But don’t worry—use it qualitatively and ignore the math!
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Fractional Brownian Motion (fBm)
Lacunarity

• The gap between frequencies in spectral summation

• Virtually always set to 2.0 (hence “octaves”)

• May want to use 2.0 ± ~0.1
To avoid artifacts in lattice-based noises
As with value & gradient Perlin noises

• Using values << 2.0

Slower: takes more octaves to get fine details
Gains little, visually

• Using values >> 2.0

Faster: takes less octaves to get fine details
But discrete frequencies can show through
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Fractional Brownian Motion (fBm)
Octaves

• Number of octaves is number of scales of self similarity

• Octaves are only “octaves” when lacunarity is 2.0

• Octaves = detail

• Can be driven by Nyquist limit

To antialias by clamping

As in QAEB tracing (see “Textures and Modelling”)

Yields pixel-sized detail everywhere
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Fractal Terrain Models
Different kinds

• Fourier:
The most mathematically “pure”
Slow and periodic

• Polygon subdivision:

Easiest to implement, but sports the worst artifacts

Triangle, square, nested, unnested, semi-nested
(see Miller, SIGGRAPH 86, and “The Science of Fractal Images”)

• Point-evaluated / procedural:
Can be the slowest, depending on basis function
Most flexible and, generally, best-looking
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Fractal Terrain Models
Point-evaluated or procedural

• Perlin noise fBm

Generalization of Perlin’s “chaos” function

(See Perlin, An Image Synthesizer, SIGGRAPH 85)

• General procedural fBm

Same as above

But using Voronoi noise, sparse convolution, etc.

• Domain-distorted procedural fBm

Add a vector-valued function to the point, before evaluation

Shmushes the resulting fractal around
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Fractal Terrain Models
Point-evaluated or procedural

The basic algorithm:

1. Start with lowest frequency (largest scale of basis)

2. Double the frequency

3. Scale amplitude down, according to spectral exponent

4. Add in new, scaled frequency

5. Goto 2.
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Code for Procedural fBm

fBm( Vector point,
NoiseFunction basis(), 
real exponent, real lacunarity, 
integer octaves )

{
real value = 0.0, amplitude = 1.0;

for ( i=0; i<octaves; i++ ) { 
value += basis(point) * amplitude;
point *= lacunarity;
amplitude *= exponent;

}

return value;
}
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Multifractals
Heterogeneous terrain models

• fBm is stationary: statistically homogeneous and isotropic

• Real terrain is far more complex

Mountains rise from plains

Peaks and valleys have different roughnesses, etc.

• We want to capture at least some of this

Devising heterogeneous fBm-based fractals

While preserving the elegance of fBm
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Multifractals
Three multifractal terrain models

• Stats-by-altitude

Conjecture: valleys are smoother than peaks

Model: multiply each octave (after first) by current “altitude”

• “Pure” multiplicative multifractal

Inner loop is multiplicative, rather than additive as in fBm

Problem: converges to zero or diverges to infinity

• Hybrid additive/multiplicative multifractal

Conjecture: valleys should be smoother at all altitudes

Model: multiply octave i by value of octave i -1; sum this
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Code for Stats-by-Altitude Multifractal

StatsByAlt( Vector point, NoiseFunction basis(), 
real exponent, real lacunarity, 
integer octaves )

{
real value, amplitude = 1.0;

if ( octaves ) // do first octave
value = basis( point );

for ( i=1; i<octaves; i++ ) { 
value += value * basis(point) * amplitude;
point *= lacunarity;
amplitude *= exponent;

}

return value;
}
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Code for Multiplicative Multifractal

Multifractal( Vector point, 
NoiseFunction basis(), 
real exponent, real lacunarity, 
integer octaves )

{
real value = 1.0, amplitude = 1.0;

for ( i=0; i<octaves; i++ ) { 
value *= basis(point) * amplitude;
point *= lacunarity;
amplitude *= exponent;

}

return value;
}
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Code for Hybrid Multifractal

HybridMF( Vector point, NoiseFunction basis(), 
real exponent, real lacunarity, 
integer octaves )

{
real value, signal, weight, amplitude = 1.0;

if ( octaves <= 0 ) return 0.0;

weight = value = basis( point ); // first octave
octaves -= 1.0;

for ( i=1; i<octaves; i++ ) { 
signal = weight * basis(point) * amplitude;
value += signal;
weight = signal;
point *= lacunarity;
amplitude *= exponent;

}

return value;
}
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Erosion
• Erosion is what shapes terrains

Bedrock is fractal; erosion works on this fractal substrate

Creates context-sensitive fractals: river networks

• Diffusive erosion

Dry creep, rain splash, animal activity, etc.

Equivalent to low-pass filter—can operate very efficiently  

• Fluvial erosion: running water

Rivers and glaciers are principal geomorphic agents

Very important—but too hard to implement and slow to run!

(see Musgrave et al, SIGGRAPH 89, and geology literature)
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Conclusions

• Fractal models capture complexity, with simplicity

• Amplification: wealth of detail from simple model

• Height field terrain models don’t cut it

• fBm doesn’t cut it

• Multifractal models are a little better

• Dilation symmetry rocks!

• Alas, Nature is more complex than fractal geometry


